Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632973

RESUMO

Insect migrations have ecological and economic impacts, particularly in agriculture. However, there is limited knowledge about the migratory movements of pests at the continental scale, which is an important factor influencing the spread of resistance genes. Understanding the migratory patterns of economic pests, like Helicoverpa zea (Boddie), is essential for improving Integrated Pest Management (IPM) and Insect Resistance Management (IRM) strategies. In this study, we used stable hydrogen isotopic ratios in wing tissue as a biogeochemical marker to examine migratory patterns and estimate the native origins of H. zea individuals collected across a wide latitudinal gradient in North America. Samples collected at higher latitudes (Ontario, Canada and Minnesota, USA) exhibited a greater proportion (60%-96%) of nonlocal individuals, with an increased probability of origin from the southeastern United States. Populations from mid-latitudes (Florida, North Carolina, and South Carolina) showed a blend of local and nonlocal (40%-60%) individuals. Finally, 15% of the southernmost population individuals (Puerto Rico) were classified as migratory, with some having a probability of origin at higher latitudes (>30°). Overall, our results provide evidence of a northward spring/summer migration of H. zea in North America and underscore the significance of the southeastern United States as a hub for genetic flow. In addition, based on stable hydrogen isotopic ratios, there is strong evidence of reverse (southward) migration of H. zea from the continental United States to Puerto Rico. Our study highlights the implications for IPM and IRM programs and the need for management strategies that account for both northward and southward migration patterns.

2.
Sci Rep ; 13(1): 8081, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202428

RESUMO

Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Humanos , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Mariposas/genética , Mariposas/metabolismo , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Nova Escócia , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/genética , Resistência a Inseticidas/genética
3.
J Econ Entomol ; 116(3): 916-926, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36939027

RESUMO

The first case of field-evolved resistance in European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to transgenic corn (Zea mays L.) producing a Bacillus thuringiensis (Bt) Berliner toxin was discovered in Nova Scotia, Canada in 2018. This case involved resistance to Bt corn producing Cry1Fa toxin. As a mitigation response, Bt corn hybrids producing only Cry1Fa were replaced in that region with hybrids producing two or three Bt toxins targeting O. nubilalis. In this study, we collected O. nubilalis in several corn-growing regions of Canada during 2018 to 2020 and tested their progeny for susceptibility to four Bt toxins produced by currently available Bt corn that targets O. nubilalis: Cry1Fa, Cry1Ab, Cry1A.105, and Cry2Ab. Based on toxin concentrations killing 50% of larvae from 23 field-derived strains relative to two susceptible laboratory strains, the resistance ratio was at least 10 for Cry1Fa for 12 strains (52% of strains) consisting of 10 strains from Nova Scotia, as well as strains from near Montreal, Quebec and Roseisle, Manitoba. We found low but statistically significant resistance relative to at least one of two susceptible strains for Cry1Ab (23% of strains), Cry1A.105 (45% of strains), and Cry2Ab (14% of strains), with maximum resistance ratios of 3.9, 5.8, and 2.0, respectively. These results provide key information for addressing O. nubilalis resistance to Bt corn in Canada.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Zea mays/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Mariposas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Canadá , Plantas Geneticamente Modificadas/genética , Resistência a Inseticidas
4.
Pest Manag Sci ; 78(8): 3551-3563, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35607861

RESUMO

BACKGROUND: Striacosta albicosta Smith (Lepidoptera: Noctuidae) is a primary pest of corn, Zea mays L., in the Great Lakes region, causing yield loss and exacerbating mycotoxin contamination of grain. Foliar insecticides are currently used to manage S. albicosta; however, the toxicity and residual activity of these insecticides against S. albicosta are unknown. Laboratory and field bioassays were conducted to determine the susceptibility and period of in-field efficacy provided by chlorantraniliprole, lambda-cyhalothrin, spinetoram, and methoxyfenozide against S. albicosta. Bioassay data were used to simulate management scenarios. RESULTS: For all insecticides tested, 1st instars were highly susceptible to the recommended field application rates and were >3-fold more susceptible to insecticides than 3rd instars. Insecticide activity decreased after application for all insecticides, with chlorantraniliprole having the longest residual activity. In simulated management scenarios where an insecticide was applied at or below the recommended 5% egg mass threshold with additional oviposition, methoxyfenozide application resulted in greater larval survival 14 days after application (DAA) than the other insecticides tested. In scenarios where insecticides were applied 7 days before threshold was reached, all insecticides resulted in larval survival. CONCLUSION: These data demonstrate that chlorantraniliprole, lambda-cyhalothrin and spinetoram, applied in conjunction with monitoring, provide effective control of S. albicosta larvae for 10-14 days, whereas methoxyfenozide provides effective control for less than 7 days. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Ontário , Zea mays
5.
J Econ Entomol ; 115(1): 10-25, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34922393

RESUMO

Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.


Assuntos
Bacillus thuringiensis , Bacillus , Mariposas , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Canadá , Endotoxinas , Proteínas Hemolisinas , Resistência a Inseticidas , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Estados Unidos , Zea mays/genética
6.
J Econ Entomol ; 113(5): 2187-2196, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32865199

RESUMO

Fusarium graminearum Schwabe (Hypocreales: Nectriaceae) and Fusarium verticillioides (Saccardo) (Hypocreales: Nectriaceae) Nirenberg infection results in accumulation of deoxynivalenol (DON), zearalenone (ZON), and fumonisin (FBs) mycotoxins in infected corn, Zea mays L. Lepidopteran insect feeding may exacerbate fungal infection by providing entry points on the ear resulting in increased mycotoxin contamination of grain. The objective of the current study was to simulate different types and severity levels (extent of injury) of lepidopteran injury to corn ears at different stages of ear development and its effect on mycotoxin accumulation in grain corn. Field experiments were conducted under conditions favorable for F. graminearum development where insect injury was simulated to corn ears and inoculated with F. graminearum. All simulated injury treatments resulted in elevated mycotoxin concentration compared with ears without simulated injury; however, the severity of injury within a treatment had little effect. Injury to kernels on the side of the ear resulted in greater DON and ZON concentration than injury to tip kernels, grazing injury applied at physiological maturity, or when no injury was simulated. Greater FBs was measured when tip kernel injury was simulated at the blister stage or when side kernel injury was simulated at milk and dent stages compared with noninjured ears, silk clipping, tip injury at milk and dent stages, or grazing injury at physiological maturity. The current study confirms that the risk of mycotoxin accumulation in the Great Lakes region is greater in the presence of ear-feeding insect pests and may differ depending on the feeding behavior of pest species.


Assuntos
Fusarium , Micotoxinas , Animais , Great Lakes Region , Poaceae , Zea mays
7.
Sci Rep ; 9(1): 18247, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796764

RESUMO

Transgenic maize, Zea mays L., modified to express insecticidal proteins from the bacterium Bacillus thuringiensis Berliner, was introduced in 1996 to control Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), a key maize pest in North America. The high-dose/refuge concept, developed to delay or prevent resistance evolution to this technology, has been exemplified by O. nubilalis as no cases of practical resistance were identified in >20 years. This study documents the first case of practical resistance to Cry1F Bt maize by O. nubilalis in North America. Four collections of O. nubilalis were made from Cry1F maize in Nova Scotia, Canada with unexpected injury (UXI) ranging from 30-70%. Greater survival of UXI collections was observed when larvae were exposed to the highest concentration of 200 ng Cry1F cm-2 in diet-overlay bioassays compared to susceptible laboratory colonies. Larvae also fed and survived on Cry1F leaf tissue in 7 d bioassays. A collection from non-Bt maize, 120 km west of the UXI region, also survived 200 ng Cry1F cm-2, but was susceptible to Cry1F leaf tissue. Detection of Cry1F-resistant O. nubilalis in what might be considered an insignificant maize-growing region indicates that a number of preventable causal factors may have been related to inadequate stewardship of Bt maize technology.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Mariposas , Plantas Geneticamente Modificadas , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Resistência a Inseticidas , Larva , Nova Escócia , Folhas de Planta
8.
J Econ Entomol ; 112(5): 2335-2344, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31114867

RESUMO

Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) is an important pest of corn, Zea mays L. in the Great Lakes region, which can be controlled by transgenic corn expressing Vip3A protein from Bacillus thuringiensis. To inform insect resistance management, the susceptibility, survival, and development of first, third, and fifth instar S. albicosta to Vip3A was determined using protein-overlay and corn tissue bioassays. Tissue bioassays were also used to determine the quantity of corn tissues with and without Vip3A-expression consumed by various instars. In diet bioassays, third and fifth instars were significantly less susceptible to Vip3A compared with first instars; however, no significant difference was observed in susceptibility of older instars. In tissue bioassays, survival was lowest for larvae fed Vip3A-expressing tissues, ranging from 0 to 21%, however, developmental measures of larvae fed Vip3A-expressing tissues did not differ from those fed artificial diet or tissues of other Bt events. Consumption of Vip3A × Cry1Ab tissues did not differ from that of Cry1Ab for each instar. Estimated Vip3A exposure of first instars ranged from 3 to 57 times higher than the concentration required for 99% mortality (LC99) based on the product of the reported Vip3A expression in transgenic corn tissues and the consumption observed in tissue bioassays; however, the estimated exposure of third and fifth instars to Vip3A was lower than their respective LC99. These findings suggest that first instar S. albicosta maybe exposed to a high dose of Vip3A under field conditions; however, Vip3A-expression in corn may not be high dose against older instars, increasing the risk of resistance development.


Assuntos
Bacillaceae , Bacillales , Bacillus thuringiensis , Lepidópteros , Mariposas , Animais , Proteínas de Bactérias , Endotoxinas , Great Lakes Region , Proteínas Hemolisinas , Larva , Plantas Geneticamente Modificadas , Zea mays
9.
J Econ Entomol ; 111(1): 65-71, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186433

RESUMO

Striacosta albicosta (Smith; Lepidoptera: Noctuidae) is a pest of corn (Zea mays L.), which has recently expanded its range into Ontario, Canada. Genetically modified corn expressing Vip3A insecticidal protein from Bacillus thuringiensis is a biotechnological option for the control of S. albicosta. To support an insect resistance management program, we conducted a study of baseline susceptibility of 10-field collected S. albicosta populations in Ontario, Canada to Vip3A before widespread commercial adoption. Neonates were exposed to artificial diet overlaid with Vip3A. The LC50 ranged from 22.7 to 53.5 ng Vip3A cm-2. The EC50 ranged from 11.4 to 30.2 ng Vip3A cm-2. There was low inter-population variation in susceptibility to Vip3A, which we believe represents the natural geographical variation in response and not variation caused by previous exposure to selection pressure of the Vip3A protein.


Assuntos
Proteínas de Bactérias/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Animais , Cadeia Alimentar , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Ontário , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Zea mays/química , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA